Impact of Stocking Common Carp (*Cyprinus Carpio*) on Production in Some Selected Beels in Gazipur District, Bangladesh

Arafat Hossain Apon^{1,2}, Amir Hossain^{2,3}, Saiful Islam¹, Hafzur Rahman^{1,2}, Abdulla-Al-Asif^{4,5}, Jabed Ali Mirza¹, Md Masum Billah⁶

¹Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
 ²Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
 ³Department of Fisheries Biology & Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
 ⁴Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
 ⁵Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore-7408, Bangladesh
 ⁶Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia

Abstract-The present study was conducted in three seasonal beels in Gacha union under Gazipur sadar upazila in Gazipur district during the period from June 2015 to January 2016. The objectives of the study were to evaluate the impact of stocking common carp on the abundance and biodiversity of native fish species in seasonal beels. Three seasonal beels such as Baroholai, Makhna and Buridha which were connected with Turag River through different canals were selected to implement the study. Baroholai and Makhna beel were stocked with common carp fingerlings at 2500 per hectare. Buridha beel served as control. Necessary data were collected from the fishermen and lease holders of the concern beel through using structured questionnaire by survey method. A total of 42-43 species of fishes were recorded from stocked beel as against of 43 species in control beel. Shanon- Weiner diversity index averaged 2.58 in stocked beel as opposed to 2.68 for control beel. The studied beel had medium richness in terms of biodiversity and faunal abundances. Per hectare fish production was 522-577kg in stocked beels as compared to 365kg in control beel. Cyprinidae was the most abundant group contributing to the bulk of fishery yield. Surface feeder took a lead over other groups of fishes in stocked beel as opposed to bottom feeder in case of control beel. Bottom dwelling small catfishes seems to be affected in presence of common carp in the stocked beels. Control beel harboured increased number and quantity of catfishes. Fish productions in the seasonal beels were profitable. Per hectare total cost of fish production averaged tk 34976.67 as against of total gross return of tk 92683.67. Benefit cost ratio (BCR) was found to be 2.57-3.42 in stocked beel and 2.01 in control beel. Further researches are needed to precisely determine the possible consequences of stocking common carp in seasonal beels.

Keywords—Taxonomy, diversity, abundance, fish species assemblage, cost-benefit analysis

INTRODUCTION

Bangladesh is uniquely rich in water bodies. It is endowed by the three major river systems namely the Ganges-Padma, the Meghna and the Jamuna-Brahmaputra. A large number river with innumerable tributaries and distributaries are criss-cross the country. Their combined flow is nearly 6 million cusecs, all of which drain into the Bay of Bengal. Three types of water resources are available in Bangladesh such as, freshwater, brackish water and marine water. There are two types of inland water bodies such as open water bodies and closed water bodies. The country contains 4700795 ha of inland water area, of which 3906343 ha comprises the open water and the rest 794361 ha occupy the closed water (DoF, 2016). The fisheries sector contributes about 3.69% of the country's GDP in 2014-15 and 23.12% to the agricultural income. About 1.92% of total export earnings (DoF, 2016) were derived from exporting fish and fishery products. Beels are saucer like deeper portion in floodplain which may retain water throughout the year (permanent *beels*) or dry up during winter (seasonal beels). Beels are well known for their rich biological diversity including fish fauna. Fisheries remain as an important activity in such water bodies, since time immemorial, but such waters have still larger spectrum of utilities such as (I) recharge of ground water, (II) accumulation of flood waters, (III) shore-line stabilization, (IV) trapping of toxic substances, (V) trapping of nutrients, (VI) repository of biodiversity as abode for large variety of plant and animal species, (VII) sources- for entertainments, (VIII) protection and development of aquatic food chains, (IX) breeding, grazing and nursery grounds for riverine fish stock, and (X) regulator of local climate and so on (Jha, 1989; Islam et al., 2017). The beels are considered as biologically sensitive habitats as they play a vital role in the recruitment of fish population in the riverine ecosystems and provide nursery grounds for commercially important fishes (Devnath et al., 2004). But due to the progressive decline in protein intake, we arrived at a situation of protein deficiency. Common carp (Cyprinus carpio) has been brought to Bangladesh from Nepal in 1979 for culture purpose. The common carp originated from temperate climatic region with preference to warm temperatures. It naturally inhabits lakes, ponds or slow moving waters, preferably with a muddy bottom. It has high tolerance to wider range of temperature between 0°c and 41°c. The Common carp is omnivorous and can feed on a variety of food materials with preference to feed from the bottom (Horvath, 1992; Yeasmin *et al.*, 2016; Islam *et al.*, 2016; Yeasmin *et al.*, 2018; Hossain *et al.*, 2016). Continued decline in fish production from capture fishery is an alarming situation for the country. Now the open water fisheries resources of the country are being treated as highly endangered. Out of 266 reported freshwater fin fishes in Bangladesh (Rahman, 2000), 54 species are already threatened to varying level of threat. Among the threatened fish species, 12 are critically endangered, 28 endangered and 14 are vulnerable (IUCN, 2000). The present research work has been undertaken to determine the yield performance of Common carp in this selected beels; to determine the effect of Common carp on Biodiversity of native species in the beels; and to assess the economic contribution of Common carp stocked in the beels.

METHODOLOGY

Study period

The present study was conducted during the period from May 2015 to January 2016. But data was collected from October to January in the studied beels.

Study area

The present study was conducted in three beels in Gacha union under Gazipur upazila in Gazipur district. Barohalai with coordinate, 23°56'08.5"N 90°21'57.8"E; Makhna with coordinate 23°56'30.7"N 90°21'56.8"E and Buridha with coordinate 23°56'15.9"N 90°22'11.6"E.

Sampling procedure

Data were collected twice in a month in order to determination of catch composition, amount of fish harvested and species assemblage in three beels.

Grouping of indigenous species

Indigenous fish species recorded during the period of investigation were arranged according to arbitrarily family guild, niche based tropho-tropic guild and tropho-spatial guild for the sake of result interpretation (Table 1).

Family based fish guilds

Table 1: Outlines of family based common fish guild in
the studied beels.

Group	Including family					
Carps	Cyprinidae					
Barbs	Cyprinidae, Cypriodontidae					
Minnows	Cyprinidae, Aplochelidae, Cyprinodontidae					
Catfishes	Clariidae, Siluridae, Heteropneustidae,					
	Chacidae, Schilbeidae, Bagridae,					
	Sisoridae, Pangasiidae					
Perches	Anabantidae, Nandidae, Pristolepitidae,					
	Ambassidae, Cichlidae					
Minnows	Cyprinodotidae, Cyprinidae					
Eels	Mastacembelidae, Anguillidae,					
	Synbranchidae					
Prawns	Palaemonidae					
Gars	Belonidae, Hemirhamphidae					
Gobies	Gobiidae					
Gouramies	Belontiidae					
Loaches	Cobitidae					
Featherbacks	Notopteridae					
Snakeheads	Channidae					

Niche-based tropho-trophic fish guilds

Niche-based tropho-trophic fish were grouped as, Planktivore, Detritivore, Omnivores, Predators, Larvivore, and Ovolarvivores.

Niche based tropho-spatial fish guilds

Niche based tropho-spatial fish guilds were grouped as, Surface feeder, column feeder and Bottom feeder.

Species assemblage impact assessment Estimation of Shanon-Weiner Diversity Index

The Shannon's diversity index (H') was used to measure the extent of diversity by combining aspects of species richness (S) and evenness (E). The formula for Shannon diversity index is:

$$H' = -\Sigma p_i Ln P_i$$

 P_i = proportional abundance of the *I* th species = ni /N n_i = number of individual recorded in *I* th species N = total no. of individuals in the sample Ln = natural log. Species evenness (E) = H/H_{max} Hmax = Log(S) S = Species richness

Inferences can be drawn on the basis of the H' values calculated. The lesser values will be the lower diversity and vice-versa.

Fish catch estimation

Total catch of fish during sampling was calculated as follows:

Total catch for a specific type of gear = $N \times f \times CPUE$ N = No. of fishing days per year

f = Mean number of individual fishing unit per day CPUE = Mean catch per unit effort

Total catch for gears = Sum of catch by different gears Total catch from the ditches = average catch from a ditch \times total no. of ditch.

Total catch = total catch from all gears + total catch from all ditches.

Data analysis

The data were scrutinized and checked for possible inconsistencies. After thorough verification, the data were compiled in tabular form and entered into MS Excel sheet for performing necessary analysis. Statistical functions such as, range, mean, standard deviation and percentage were used to explain the data. Student's t-test at 5% level of significance was employed to compare the treatment (common carp stocking) means with that of the control.

RESULTS

Taxonomic account of the fishes

During the period of investigation 43 indigenous fish species including 2 species of prawns and one exotic species of Common carp (*Cyprinus carpio*) were recorded from Baroholai, which were in Makhna beel and 42 in Buridha beel. These species were distributed over 8 orders, 18 families, 31 genera and 43 species. Among the 17 families Cyprinidae, Clupidae, Siluridae, Mastacembelidae, Gobiidae, Ambassidae & Palaemonidae were the predominating forms having represented by 10 species, 2 species, 2 species, 2 species, 1 species, 2 species and 2 species, respectively (Table 2).

Species assemblage

Presence of a good number of species in the stocked and control beel is indicative of the relative richness of selected beels in term of fish biodiversity. Species occurrences with arbitrary Impact Index in the stocked and non-stocked beels are presented in Table 3. Species occurrence (S) and Species index (SI) and Shanon diversity index (H) in different beels are shown in Table 4.

Species diversity by total number and unit abundance

Mean annual species diversity by total number of individual and unit abundances are shown in Table 6. Species diversity suffered a loss 3% in Baroholai beel. The mean value of Shanon diversity indiex was found to be 2.687 in control beel and 2.582 in the stocked beels. Individual value of Shanon index was 2.579 in Baroholai beel and 2.584 in Makhna beel. There was no significant difference (p>0.05) in the value of Shanon dversity index between the stocked and control beel (Table 5).

Table 2: List of fish species including prawns "Recorded from the studied beels".

Order		Genus	Species
1. Cypriniformes	1. Cyprinidae	1 Catla	1 C. catla
		2. Labeo	1 L. rohita 2. L. bata
			3. L. calbasu.
		3. Cirrhinus	1. C. cirrhosus 2. C.reba
		4. Cyprinus	1.C. carpio
		5. Puntius	1. P. sarana 2. P. chola
			3. P. ticto 4. P. sophore
		6.Amblypharyngodon	1 A. mola
		7. Aspidopariar	1 A. jaya
	2 Chunaidan	8 Esomus e	1 E. danricus
	2.Clupeidae	9. Botia	1 B. dario
	2	10. Gadusia. 11. Corica	1. G. chapra 2. C. soborna
	3. Aplocheilidae	12. Aplocheilus	1 A. panchax
2. Perciformes	1. Ambassidae	1. Chanda	1 C. nama
	5	2. Pseudambassis	1. P. ranga
	2. Anabantidae	1. Anabas	1. A. testudineus
	3. Mastacembelidae	1. Mastacembelus	1. M. pancalus
	i i i i i i i i i i i i i i i i i i i	2. Macrognathus	1. M. aculeatus
	4. Nandidae	1. Nandus	1. N. nandus
	5. Ospronemidae	1. Colisa	1. C. fasciata 2. C. lalia
	6. Gobidae	1. Glossogobius 🔷	1, G. giuris
3. Siluriformes	1. Clariidae	1. Clarias	1. C. batrachus
	2. Bagridae	1. Sperata	1. S. aor
		2. Mystus	1. M. tengara 2. M. vittatus
		v	3. M. cavasius
	3. Heteropneustidae	1. Heteropneustes	1 H. fossilis
	4. Schilbeidae	1. Clupisoma	1. C. garua
		2. Ailia	1.A. coila
	5. Siluridae	1. Wallago	1.W. attu
		2. Ompok	1.O. pabda
4. Beloniformes	1. Belonidae	1. Xenetodon	1.X. cancila
5. Channiformes	1. Channidae	1. Channa	1.C. punctatus 2.C. striatus
6. Clupeiformes	2. Engraulidae	1. Gudusia	1.G. chapra
7. Osteoglossiformes	U	1. Notopterus	1.N. notopterus
8. Decapoda	1. Palaemonidae	1. Macrobrachium	1. M. rogenbarggi 2. M. malcom
-			0 00

Table 3: Species occurrence and impact index in the studied beels.

SPC	Fish species	Stocked Beel		Control Beel	Impact Index
		Baroholai	Makhna	Buridha	
1	Catla catla	+	+	+	No impact
2	Labeo rohita	+	+	+	No impact
3	Labeo calbasu	-	-	+	Negative
4	Labeo bata	+	+	+	No impact
5	Cirrhinus cirrhosus	+	+	+	No impact

SPC	Fish species	Stocke	l Beel	Control Beel	Impact Index
	-	Baroholai	Makhna	Buridha	-
6	Cyprinus carpio	+	+	0	Stocked
7	Puntius chola	+	+	+	No impact
8	Puntius sophore	+	+	+	No impact
9	Puntious ticto	+	+	+	No impact
10	Puntious sorona	+	+	+	No impact
11	Amblypharyn mola	+	+	+	No impact
12	Aspidopariar jaya	+	+	+	No impact
13	Esomus danricus	+	+	+	No impact
14	Aplocheilus panchax	+	+	+	No impact
15	Botia Dario	+	+	+	No impact
16	Wallago attu	+	+	+	No impact
17	Sperata aor	+	(-)	+	Ambiguous
18	Mystus vittatus	+	+	+	No impact
19	Mystus cavasius	+	+	+	No impact
20	Mystus tengara	+	+	+	No impact
21	Clarius batrachus	+	+	+	No impact
22	H. fossilis	+	+	+	No impact
23	Ailia coila	+	+	+	No impact
24	Clupisoma garua	(-)	(-)	+	(Negative)
25	Ompok pabda	(-) (-)	nclo	+	(Negative)
26	Corica soborna	LE+	+ "1	Pk +	No impact
27	Gudusia chapra 🛛 🔨	° +	+	4	No impact
28	Chanda nama 🛛 🏑 炎	+	+	+	No impact
29	Pseudambassis ranga	-+	+	- P	No impact
30	A.testudineus	+	+	+2	No impact
31	Nandus nandus 🚽	+	+	+ 🗸	No impact
32	M. rosenbergii 🞽 🐇	+	+	+ 2	No impact
33	M. malcomsoni 🔒			+ 2	No impact
34	M. aculeatus 🛛 💆	+	+	+8/	No impact
35	M. pancalus	+	+	E.	No impact
36	Xenentodon cancila 🦂		+	St.	No impact
37	Colisa fasciatus	+	+	+	No impact
38	Colisa chunu	× + ×	+	+	No impact
39	Glosssogobius giuris	+	+	+	No impact
40	L. guntea	(-)	+	+	Ambigous
41	Chana punctatus	+	+	+	No impact
42	Chana striatus	+	+	+	No impact
43	N. notopterus	+	+	+	No impact

Table 4: Species occurrence,	Species index and Shanon	diversity index of indigenou	s fish in the studied beels.
Tuble II Species eccurrence,	species mach and shanon	arrensity index of indiscribe	s fish in the shared beets.

Parameters	Baroholai Beel	Makhna	Average	Buridha Beel
Total area(ha)	12	7	9.5	5
Species occurrence (S)	42	40	41	44
Species index(SI)	0.95	0.90	0.92	1.0
Shanon Index (H)	2.579	2.584	2.582	2.685

Table 5: Mean Yield (kg/ha) and unit abundance (No. ha⁻¹) in the studied beels

SL no.	Species	Baroholai		Makhna		Buridha	
		Yield (kg/ha)	No/ha	Yield (kg/ha)	No/ha	Yield (kg/ha)	No/ha
1	Catla catla	17.668	25	27.737	35	13.149	18
2	L. rohita	9.368	22	14.412	30	8.012	16
3	C. cirrhosa	2.615	7	2.937	5	4.001	10
4	C. carpio	60.834	55	84.223	73	0	0
5	P. chola	72.626	6545	61.413	5672	27.299	2145
6	P. sophore	63.459	4532	79.364	6572	21.738	1987

SL no.	Species	Barohol	ai	Makhna		Buridha	a
	opecies	Yield (kg/ha)	No/ha	Yield (kg/ha)	No/ha	Yield (kg/ha)	No/ha
7	P. ticto	11.272	1172	12.120	1376	10.162	1187
8	P. stigma	2.247	214	3.614	286	4.534	328
9	A. mola	4.263	457	5.419	507	1.799	189
10	E. danricus	1.295	1124	1.725	1438	0.439	851
11	O. cotio	1.844	876	2.314	1085	0.707	729
12	A. panchax	1.429	977	1.106	780	0.020	82
13	B. Dario	0.012	3	0.005	1	0.032	8
14	Wallago attu	47.445	51	38.915	48	42.204	58
15	Sperata aor	11.540	16	0	0	0.722	9
16	M. vittatus	4.061	547	3.563	483	4.748	510
17	M. cavius	12.172	876	10.042	763	15.109	1063
18	M. tengra	1.524	1134	1.721	1092	4.009	2907
19	C. batrachus	0.184	2	0.289	2	0.188	2
20	H. fossilis	3.381	76	2.350	64	10.135	357
21	Ailia coilia	0.679	86	1.891	93	0.387	62
22	P. anthero	1.050	107	0	0	1.982	205
23	C. garua	2.534	45	2.313	53	2.956	72
24	O. pabda	0.183	5	0	0	0.885	8
26	Corica soborna	2.407	6745	4.041	1276	0.920	2078
27	G. chapra	81.657	6877	92.041	7524	24.791	1982
28	Chanda nama	12.689	5437	ce 11.702	4792	4.072	1792
29	P. ranga	4.964	1098	4.799	1201	2.351	7291
30	A. testudineus	8.654	154	5.435	128	15.064	327
31	N. nandus	0.722	12	1.114 9	16	1.567	24
32	M. rosenbarggi	0.139	5	0.165	⊗ 8	0.707	17
33	M. Malcom	0.108	7	0.110	12	0.150	15
34	M. aceulatus	9.896	132	13.091	169	17.792	301
35	M. pancalus	<u>o</u> 11.341	327	7.831	218	25.499	783
36	X. cancila	2.644	143	1.730	108	0.843	67
37	C. fasciata	0.529	64	0.519	54	0.634	82
38	C. chunu	1.340	1232	1.76	1403	2.311	1628
39	G.giuris	37.11	2976	52.15	4398	66.7493	6434
40	C.punctatus	13.34	279	22.458 📣	563	26.738	479
41	C. striatus	0.492	2	0	0	0.787	3
42	N. notopterus	0.581	3	1.851	7	2.178	9
	Total	5T22.323		577.013		364.096	

International Journal of Excellence Innovation and Development ||Volume 2, Issue 1, Jan. 2019||Page No. 041-055||

Species assemblage and fish yield in common groups Mean contribution of common groups to the total fish yields in the studied beels were shown in table 6.

Table 6: Mean contribution of common group	os to the total fish yields in the studied beels.
--	---

Common Groups	Baroholai	Beel	Makhn	a	Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
Barb	149.60	31.10	156.51	30.68	63.73	21.50
Carp	90.48	18.81	129.30	25.35	25.16	8.48
Catfish	84.75	17.62	61.56	12.07	81.34	27.44
Clupeid	84.0	17.47	96.08	18.83	25.71	8.67
Perch	27.03	5.62	11.34	2.22	23.05	7.77
Minnow	4.56	0.94	5.14	1.00	1.16	0.39
Eels	21.23	4.41	20.9	4.10	43.29	14.60
Snakehead	13.83	2.87	23.22	4.55	27.52	9.28
Prawn	0.24	0.051	0.27	0.05	0.85	0.28
Gar	2.64	0.54	1.73	0.33	0.84	0.28
Gouramy	1.86	0.38	2.07	0.40	1.51	0.50
Loach	0.01	0.003	0.005	0.01	0.03	0.01
Featherback	0.58	0.12	1.85	0.36	2.17	0.73
Total	480.94	100	510.05	100	296.42	100

100

100

Species wise representation of the individual members of" the Barbs" to the total yield are shown in Table 7.

Fish	Baroholai	ui Beel Makhna		a	Buridh	Buridha	
	Yield(Kg/ha)	%Yield	Yield(Kg/ha)	%Yield	Yield(Kg/ha)	%Yield	
P. chola	72.62	48.54	61.41	39.23	27.29	42.83	
P. sophore	63.45	42.41	79.36	50.70	21.73	34.10	
P. ticto	11.27	7.53	12.12	7.74	10.16277	15.94	
P. stigma	2.24	1.50	3.614	2.30	4.53	7.11	
Total	149.60	100	156.51	100	63.73	100	

 Table 7: Fish production in different beels under the group Barb.

The group "Carps" was represented by Catla catla, Labeo rohita, Cirrhinus cirrhusa and Cyprinus carpio (Table 8).

Table 8: Fish production in different beels under the group "Carp".									
Fish	Baroholai Beel		Makhna	l	Buridha				
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield			
Catla catla	17.66	19.52	27.73	21.45	13.14	52.25			
L. rohita	9.36	10.35	14.41	11.14	8.01	31.84			
C. cirrhosa	2.61	2.89	2.93	2.27	4.001	15.90			
C. carpio	60.83	67.22	84.22	65.13	0	0			

Table 8: Fish production in different beels under the group "Carp".

Species- wise mean yields of catfishes are furnished in Table 9.

90.48

cellence /r

Table 9: Fish production in different beels under the group "Catfishes".

129.30

100

25.16

Fish	Baroholai	Beel	Makhr	na	Buridh	a
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
Wallago attu	47.4452	55.97818	38.91525	63.20653	42.20454	51.88176
Sperata aor	11.54	13.61546	0	02	0.72216	0.887746
M. vittatus	4.0612	4.791603	3.563084	5.787196	4.74861	5.837435
M. cavius	12.17205	14.36118	10.04297	16.31189	15.10977	18.57434
M. tengra	1.52405	1.798 <mark>14</mark> 9	1.72197	2.796841	4.00962	4.928999
C. batrachus	0.1848	0.218036	0.28938	0.470014	0.18819	0.231341
H. fossilis	3.3814	3.989542	2.35055	3.817786	10.13523	12.45917
Ailia coilia	0.6798	0.802061	1. <mark>8</mark> 9104	3.071446	0.3876	0.476474
P. anthero	1.05	1.238842		• 0	0	0
C. garua	2.5344	2.99021	2.31345	3.757528	2.95647	3.634369
O. pabda	0.1837	0.216738	0.48071	0.780774	0.88536	1.088367
Total	84.7566	100	61.5684	100	81.34755	100

The minnows were represented by 4 species such as *Amblypharyngodon mola*, *Aspidopariar jaya*, *Esomus dandricus*, *Osteobrama cotio* and *Aplocheilus panchax* (Table 10).

Table 10: Fish production in different beels under the group Minnows.

Fish	Baroholai Beel		Makhna	l	Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
A. mola	4.26	48.27	5.41	51.29	1.79	60.63
E. danricus	1.29	14.66	1.72568	16.33	0.43	14.81
O. cotio	1.84	20.87	2.31	21.90	0.71	23.83
A. panchax	1.42	16.18	1.11	10.47	0.02	0.71
Total	8.83	100	10.56	100	2.96	100

The group "Clupeids" was comprised of Gudusia chapra and Corica soborna (Table 11).

Table 11: Fish production in different beels under the group Clupeid.

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
G. chapra	81.65	97.13	92.04	95.79	24.79	96.42
Corica soborna	2.41	2.86	4.04	4.21	0.92	3.57
Total	84.06	100	96.08	100	25.71	100

Total

Perches were represented by 4 species such as, *Anabus testudienus, Chanda nama, Pseudambassis ranga* and *Nandus nandus*. Contribution of these species to the total yields is shown in Table 12.

Fish	Baroholai Beel		Makhn	Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	
Chanda nama	12.68	46.94	6.65	36.97	4.07	17.66	
P. ranga	4.96	18.36	4.80	26.65	2.35	10.19	
A. testudineus	8.65	32.01	5.43	30.18	15.06	65.33	
N. nandus	0.72	2.67	1.11	6.18	1.56	6.79	
Total	27.03	100	18.01	100	23.05	100	

Table 12: FisEh production in different beels under the group "perches".

The group "Prawn" was represented by 2 species which included *Macrobrachum rosenbergii* and *Macrobrachium malcomsonii* (Table 13).

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
M. rosenbarggi	0.13915	56.09	0.16536	60	0.70788	82.51
M. malcom	0.1089	43.90	0.11024	40	0.150042	17.48
Total	0.24805	100	0.2756	100	0.857922	100

Table 13: Fish production in different beels under the group Prawn.

List of the the species included in the group "Eels" is presented in Table 14.

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
M. aceulatus	9.89	46.59	13.09	62.56	17.79	41.09
M. pancalus	11.34	53.40	7.83	37.43	25.49	58.90
Total	21.23	100	20.92	100	43.29	100

The group "Gars" represented by X. *cancila* to the total fish yield in Baroholai beel, Makhna beel and Buridha beel, respectively (Table 15).

Table 15: Fish production in different beels under the group "Gars".

Fish	Baroholai Beel		Makhna 🧪		Buridha	
	Yield (Kg/ha)	% Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
X. cancila	2.644	100	1.730	100	0.843	100

The group "Gouramies" was comprised of *Colisa fasciata* and *C. chunu* (Table 16).

Table 16: Fish	production in	n different beels	under the group	o "Gouramies".

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
C. fasciata	0.52	28.32	0.51	24.27	0.634	38.36
C. chunu	1.34	71.67	1.62	75.72	1.021	61.63
Total	1.86	100	2.13	100	1.65	100

The Loaches were represented by two species such as, B. dario (Table 17).

Table 17: Fish production in different beels under the group Loach.

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
B. dario	0.012	100	0.005	100	0.032	100

The snakeheads were comprised of species viz., Chana punctatus and Chana (Table 18).

Table 18: Fish production in different beels under the group "Snakeheads".

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
C. punctatus	13.346	96.43	22.45	100	26.73	97.13
C. striatus	0.492	3.56	0	0	0.78	2.86
Total	13.83	100	22.45	100	27.52	100

Featherbacks was supported by 1 species Notopterus notopterus (Table 19).

Table 19: Fish production in different beels under the group Feather back.

Fish	Baroholai Beel		Makhna		Buridha	
	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield	Yield (Kg/ha)	%Yield
N. notopterus	0.58135	100	1.851	100	2.178	100

Niche-based tropo spatial fish production

Quantitative contribution of individual species to the total yield in relation to specific feeding zone is summarized in Table 20, 21, 22 and 23.

	Tropho-spatial guilds Baroholai Beel Makhan beel Buridha beel									
Tropho-spatial guilds	Baroholai B	eel	Makhan I	Makhan beel		beel				
	Yield (Kg/ha)	% yield	Yied (Kg/ha)	% yield	Yield (Kg/ha)	% yield				
Surface feeders	284.08	54.38	301.40	53.09	114.76	16.55				
Column feeders	9.95	1.904	16.26	2.86	10.19	1.46				
Bottom feeders	228.291	43.71	249.97	44.04	568.39	81.98				
Total:	522.32	100	567.64	100	693.35	100				

Table 20: Yield of tropho-spatial guilds in the studied beels.

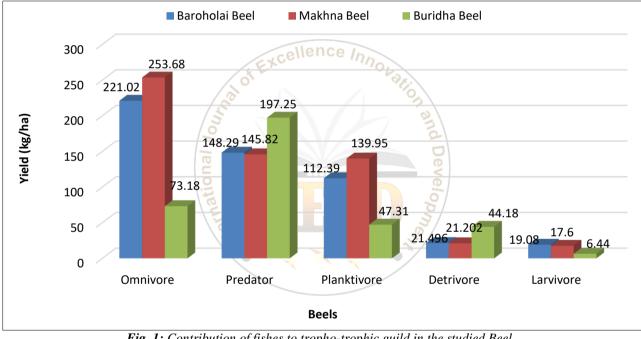
Table 21: Species assemblage of surface feeders in tropho-spatial fish guilds.

S	urface feeders:	Baroholai b		Makhna l		Buridha beel	
		Yield (kg/ha)	percent	Yield (kg/ha)	percent	Yield (kg/ha)	percent
1	Catla catla	17.66	6.219	27.74	8.83	13.15	11.32
2	P. chola	72.62	25.56	nce 61.41	19.55	27.29	23.49
3	P. sophore	63.45	22.34	79.36	25.26	21.74	18.71
4	P. ticto	11.27	3.97	12.12 🏹	3.86	10.16	8.74
5	P. stigma	2.25	0.79	3.61	> 1.15	4.53	3.90
6	G. chapra	81.65 💲	28.74	92.04	29.29	24.79	21.33
7	Corica soborna	2.41	0.85	4.04	1.28	0.92	0.79
8	A. mola	4.26	1.50	5.41	1.73	1.80	1.55
9	E. danricus	1.29	0.45	1.73	0.55	0.44	0.38
10	O. cotio	1.84	0.65	2.31	0.74	0.71	0.61
11	A. panchax	1.43 📹	0.50	1.11	0.35	0.02	0.02
12	B. Dario	0.01\ 乞	0.004	0.005	0.002	0.03	0.03
13	Ailia coilia	0.68	0.24	1.89	0.62	0.38	0.33
14	P. anthero	1.05	0.37	2.12	0.67	1.45	1.24
15	Chanda nama	12.68	4.46	10.65	3.39	4.07	3.50
16	P. ranga	4.96	1.74	4.79	1.52	2.35	2.02
17	X. cancila	2.64	0.931	1.73	0.55	0.84	0.72
18	C. fasciata	0.52	0.18	0.51	0.16	0.63	0.54
19	C. chunu	1.34	0.47	1.56	0.49	0.87	0.75
	Total	284.08	100	314.17	100	116.21	100

 Table 22: Species assemblage of Column feeders in tropho-spatial fish guilds.

Column feeders		Barohola	Baroholai		a	Buridha	
		Yield (kg/ha)	Percent	Yield (kg/ha)	Percent	Yield (kg/ha)	Percent
1	L. rohita	9.36	94.15	14.41	88.61	8.01	78.62
2	N. notopterus	0.58	5.84	1.85	11.38	2.17	21.37
	Total	9.95	100	16.26	100	10.19	100

Table 23: Species assemblage of Bottom feeders in tropho-spatial fish guilds.


	Bottom feeders	Barokha	Barokhali		Makhna		a
		Yield (kg/ha)	Percent	Yield (kg/ha)	Percent	Yield (kg/ha)	Percent
1	C. cirrhosa	2.61	1.14	2.93	1.17	4.14	1.67
2	C. carpio	60.83	26.64	84.22	33.69	0	0
3	Wallago attu	47.44	20.78	38.91	15.56	42.20	17.58
4	Sperata aor	11.54	5.05	0	0	0.72	0.31
5	M. vittatus	4.06	1.77	3.56	1.42	4.74	1.97
6	M. cavius	12.17	5.33	10.04	4.01	15.11	6.29
7	M. tengra	1.52	0.66	1.72	0.68	4.11	1.67

International Journal of Excellence Innovation and Developmen	t
Volume 2, Issue 1, Jan. 2019 Page No. 041-055	

I	Bottom feeders	Barokh	ali	Makhn	a	Buridh	a
		Yield (kg/ha)	Percent	Yield (kg/ha)	Percent	Yield (kg/ha)	Percent
8	C. batrachus	0.18	0.08	0.28	0.11	0.18	0.07
9	H. fossilis	3.38	1.48	2.35	0.94	10.13	4.22
10	C. garua	2.53	1.11	2.31	0.92	2.95	1.23
11	O. pabda	0.18	0.08	0.48	0.19	0.88	0.36
12	A. testudineus	8.65	3.79	5.43	2.17	15.06	6.27
13	N. nandus	0.72	0.31	1.11	0.44	1.56	0.65
14	M. roserng	0.14	0.06	0.16	0.06	0.71	0.29
15	M. malcom	0.10	0.04	0.11	0.04	0.15	0.06
16	M. aceulatus	9.89	4.33	13.09	5.23	17.79	7.41
17	M. pancalus	11.34	4.96	7.83	3.13	25.49	10.62
18	G. giuris	37.11	16.25	52.15	20.86	66.74	27.81
19	C. punctatus	13.34	5.84	22.45	8.98	26.73	11.14
20	C. striatus	0.49	0.21	0.76	0.30	0.78	0.326
	Total	228.29	100	249.96	100	240.01	100

Tropo-trophic based fish production

Quantitative representation of individual species under each tropo-trophic domain is depicted in Figure 1.

Fig. 1: Contribution of fishes to tropho-trophic guild in the studied Beel.

Most abundant and rare species:

List of 10 most abundant and 10 least available species of fish as recorded from the studied beels are furnished in Table 24 and 25.

Sl.No.	Sl.No. Baroholai Beel		Ma	khna	Buridha		
	Species	Yield (kg/ha)	Species	Yield (kg/ha)	Species	Yield (kg/ha)	
1	G. chapra	81.65	G. chapra	92.04	G.giuris	66.74	
2	P. chola	72.62	C. carpio	84.22	Wallago attu	42.20	
3	P. sophore	63.45	P. sophore	79.36	P. chola	27.29	
4	C. carpio	60.83	P. chola	61.41	C.punctatus	26.73	
5	Wallago attu	47.44	G.giuris	52.15	M. pancalus	25.49	
6	G.giuris	37.11	Wallago attu	38.91	G. chapra	24.79	
7	Catla catla	17.66	Catla catla	27.73	P. sophore	21.73	
8	C.punctatus	13.34	C.punctatus	22.45	M. aceulatus	17.79	
9	Chanda nama	12.68	L. rohita	14.41	M. cavius	15.11	
10	M. cavius	12.17	M. aceulatus	13.09	A. testudineus	15.06	
Tota	ıl yield(kg/ha)	419.01		485.81		282.98	

Table 24: List of ten most abundant species of fish in the studied beels.

	Baroholai			Makhna			Buridha	
SL.	Species	Yield	SL.	Species	Yield	SL.	Species	Yield
1	B. dario	0.01	1	Sperata aor	0	1	C. carpio	0
2	M. malcomsonii	0.11	2	P. anthero	0	2	P. anthero	0
3	M. rosenbergi	0.14	3	B. dario	0.005	3	A. panchax	0.02
4	O. pabda	0.18	4	M. malcom	0.11	4	B. Dario	0.03
5	C. batrachus	0.18	5	M. roserng	0.17	5	M. Malcom	0.15
6	C. striatus	0.49	6	C. batrachus	0.29	6	C. batrachus	0.19
7	C. fasciata	0.52	7	O. pabda	0.48	7	Ailia coilia	0.38
8	N. notopterus	0.58	8	C. fasciata	0.52	8	E. danricus	0.43
9	Ailia coilia	0.68	9	C. striatus	0.76	9	C. fasciata	0.63
10	N. nandus	0.72	10	A. panchax	1.11	10	O. cotio	0.71
	Total	3.63			3.44			2.56

Monthly variation in fish catch

Monthly variation in the mean yield of fish in different beels have been presented in Table 33 and displayed in Figure 2.

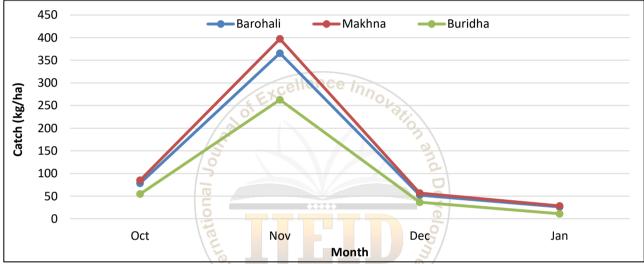


Fig. 2: Variation in monthly fish catch in the studied beels.

Yield and inference of indigeneous fish

Results of comparison of the individual yields of fishes in stocked and non-stocked beel are presented in Table 26.

Table 26: Comparison	of mean vield (kg/ha	a) of the indigenous fish	species in the studied beels
The second se	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,	$\mathbf{r}_{\mathbf{r}}$ = \mathbf{r} = r

SL.No.	Fish species	Mean Yield in	Mean Yield in	Mean yield	Remarks
		stocked beel	control beel	difference	
		(kg/ha)	(kg/ha)	(kg/ha)	
1	Catla catla	22.70	13.14	9.55	Significant (+)
2	L. rohita	11.89	8.01	3.88	Significant(+)
3	C. cirrhosa	2.77	4.01	-1.22	Significant (-)
4	C. carpio	72.53	0	72.53	Significant (+)
5	P. chola	67.02	27.29	39.72	Significant (+)
6	P. sophore	71.41	21.73	49.67	Significant (+)
7	P. ticto	11.69	10.16	1.53	Significant (+)
8	P. stigma	2.93	4.53	-1.60	Significant (-)
9	G. chapra	86.84	24.79	62.05	Significant (+)
10	Corica soborna	3.22	0.92	2.30	Significant (+)
11	A. mola	4.84	1.79	3.05	Significant (+)
12	E. danricus	1.51	0.44	1.07	Significant (+)
13	O. cotio	2.07	0.70	1.37	Significant (+)
14	A. panchax	1.26	0.02	1.24	Significan(+)
15	B. dario	0.008	0.032	-0.024	Significant (-)
16	Wallago attu	43.18	42.20	0.98	Significant (+)

International Journal of Excellence Innovation and Development
--

Volume 2, Issue 1, Jan. 2019	9 Page No. 041-055
------------------------------	---------------------

17	Sperata aor	5.77	0.72	5.05	Significant (+)
18	M. vittatus	3.81	4.74	-0.93	Significant (-)
19	M. cavius	11.10	15.10	-4.00	Significant (-)
20	M. tengra	1.62	4.00	-2.38	Significant (-)
21	C. batrachus	0.23	0.18	0.05	Significant (+)
22	H. fossilis	2.86	10.13	-7.26	Significant (-)
23	Ailia coilia	1.28	0.38	0.90	Significant (+)
24	P. anthero	0.52	0	0.52	Significant (+)
25	C. garua	2.42	2.95	-0.53	Significant (-)
26	O. pabda	0.33	0.88	-0.55	Significant (-)
27	Chanda nama	6.34	4.07	2.27	Significant (+)
28	P. ranga	4.88	2.35	2.53	Significant (+)
29	A. testudineus	7.04	15.06	-8.01	Significant (-)
30	N. nandus	0.91	1.56	-0.65	Significant (-)
31	M. roserbargii	0.15	0.70	-0.55	Significant (-)
32	M. malcomsoni	0.10	0.15	-0.05	Significant (-)
33	M. aceulatus	11.49	17.79	-6.30	Significant (-)
34	M. pancalus	9.58	25.49	-15.91	Significant (-)
35	X. cancila	2.18	0.84	1.34	Significant (+)
36	C. fasciata	0.52	0.63	-0.11	Significant (-)
37	C. chunu	1.45	0.87	0.58	Significant (+)
38	G. giuris	44.63	66.74	-22.11	Significant (-)
39	C. punctatus	17.90	26.73	-8.83	Significant (-)
40	C. striatus	0.62	0.78	-0.15	Significant (-)
41	N. notopterus	1.21	2.17	-0.96	Significant (-)
To	otal Yield (kg/ha):	544.97	364.97	180.01	Significant (+)

Status of threatened species

Status and yield of threatened species of fish are presented in Table 27.

Table 27: Mean yield (kg/ha) and inference of IUCN threatened species in the studied be	eels.
---	-------

Sl.No.	Fish species	IUCN status	Yield (kg/ha)		Remarks
	_		Stocked Beels	Scontrol Beel	
1	Ompok pabda	EN	0.33	0.88	Non-significant
2	Botia Dario	EN	0.01	0.03	Non-significant
3	Chanda nama	VU	6.34	4.07	(+) significant
4	Puntious ticto	VU	11.69	10.16	Non-significant
5	M. aculeatus	VU	11.49	17.79	(-) significant
6	Mystus cavasius	VU	11.10	15.10	(-) significant
7	P. ranga	VU	4.88	2.35	(+) significant
8	N. notopterus	VU	1.21	2.17	Non-significant
9	Nandus nandus	VU	0.91	1.56	(-) significant
10	Sperata aor	VU	5.77	0.72	Not comparable

** EN= Endangered, VU = Vulnerable

Total fish yield

Data on the total yield of fish in stocked beels and control beel are furnished in Table 28. Total mean fish yield stood at 522.323kgha-¹ and 577.013 kgha⁻¹ in Baroholai and Makhna beel respectively.

Tuble 20. Comparison of total mean fish yield in sidened and control beet.						
Treatment	Mean fish yields (kg/ha)		Remarks			
	Stocked Beel	Control Beel				
Including common carp	544.97	364.97	Significant (p<0.05)			
Excluding common arp	472.44	364.97	Significant (p<0.05)			
Common carp alone	72.53	-				

Table 28: Comparison of total mean fish yield in stocked and control beel.

Cost and return of fish production in the studied beels

Cost of fish production and economic return from stocked and non-stocked beels under the present investigation are presented in (Table 29).

Sl No	Items	Cost(Tk/ha)		
		Baroholai	Makhna	Buridha
		(8 ha)	(6ha)	(4.5ha)
Variabl	e cost:			
01	Clearing aquatic vegetation	2000.00	1600.00	1200.00
03	Salary of guards	30000.00	30000.00	30000.00
04	Bamboo pool	5000.00	4500.00	3000.00
05	Labor cost for fixing bamboo ploes	800.00	800.00	800.00
07	Cost of Fingerling(1,16,000)	19500.00	15000.00	0.000
09	Marketing cost (20% of harvested fish)	158786.00	131558.00	62260.00
10	Miscellaneous cost	2000.00	2000.00	2000.00
	A.Sub-total of variable cost :	218086.00	185458.00	99260.00
Fixed C	ost:			
11	Lease money	80000.00	60000.00	45000.00
12	Country Boat	5000.00	5000.00	5000.00
13	Guard shed/Gola	5000.00	5000.00	5000.00
14	Bana (with net)	1000.00	1000.00	1000.00
B. Sub-1	total of fixed cost:	91000	71000	56000
Total co	ost (A+B):	309086.00	192558.00	155260.00
15	Total fish production(kg)	4178.58	3462.07	1638.43
16	Average fish price(Tk/kg)	190	190	190
17	Total Gross income (Tk)	793930.20	657793.30	311301.70
18	Net income (Tk)	484844.00	465235.00	156041.00
19	BCR	2.57	3.42	2.01
Per ha V	C (Tk)	27260.00	30909.00	22057.00
Per ha F	C (Tk)	11375	11833	12444
Per ha T		38335	32093	34502
Per ha fi	sh yield (kg)	522.25	577.00	364.00
Per ha to	otal Gross income(Tk)	99241.00	109632.00	69178.00
Per ha n	et income(Tk)	60906.00	77539.00	34676.00
Average	per ha net income (Tk)	6922	22.50	34676.00
		0		

 Table 29: Cost-return of fish production in different beels.

DISCUSSIONS

During the period of investigation a moderate level of fish biodiversity were noted in the selected beels such as, Baroholai, Makhna and Buridha situated in Gacha union under Gazipur district. A total of 43 indigenous fish species including 2 species of prawns and one species of exotic Common carp (Cyprinus carpio) were recorded from Boroholai beel, as against of 42 species in case of Makhna beel. Control Buridha beel also harbored 42 species. The recorded species were distributed over 8 orders, 18 families and 31 genera. A few species of rare occurrence viz., Ompok pabda, Notopterus notopterus, Botia dario, Puntius ticto, Chanda nama, Nandus nandus and Sperata aor were also found. A very much similar level of species occurrence (75 species) was also reported from Jharkand, India by Paik et al (2003). Haque et al. (1999a) recorded a maximum of 60 fish species from oxbow lake project. On the other hand, much lower fish diversity with 26-33 species was reported from Rajdhala beel in Netrokona district (Rahman, 2000). Chanda beel and Saldu beel each contained 40 species of fish (Ehsan et al., 2000). A total of 42 indigenous fish including 2 prawn species was recorded from the Buridha beel, as opposed to 41-43 species from stocked beels. A slightly higher number of species (49) was recorded by Rahman and Hasan (1992) from Kaptai Lake. Haque et al. (1999b); Mondal et al. (2018) and Akter et al. (2016) found 43, 58 and 60 indigenous fish species fish species from three oxbow lakes. A total of 40 fish species including three exotic fish were recorded by Ehshan *et al* (2000) from Chanda *beel*. Shaha and Hossain (2002) documented 40 fish and 6 non-fish species from Salda beel in Tangail district. Saha (2007) identified 66 indigenous fish and prawn species in Boro beel in Pabna district. Presence of 42-43 indigenous fish species in Baroholai, Makhna and Buridha beels under the present study appeared to be due to open and mass migration of the indigenous species to the selected beels from the adjacent Turag River during the period of flooding.

The control beel displayed the highest Shanon-Wiener diversity index of 2.687. The stocked beels had a slightly lower Shanon diversity index (2.579- 2.584). The species index of indigenous species was 0.95 in Baroholai Beel, 0.90 in Makhna Beel and 1.0 in Buridha Beel. Hossain *et al.* (1999) estimated the Shannon-Weiner diversity indices of 3.55-4.054 in Chanda beel, 3.41-3.98 in Halti beel, and 2.49-3.30 in BSKB beel. Considering the magnitude of Shanon diversity index, all the beels under the present study were of medium richness in terms of species abundances.

In the context of fish biodiversity in Bangladesh, it could be concluded that during the study period Baroholai, Makhna and Buridha beel contained moderate level of species diversity. Among the 29 families, Cyprinidae was found to be the most dominant and diverse group with 12 genera having 22 species. Next successive position were secured by Bagridae with 5 species; Palaemonidae with 2 species, Channidae, Ambassidae with 2 species each: Mastacembelidae with 2 species. Clupeidae and Osphronemidae contained two species each. With regard to quantitative representation, Cyprinidae formed the bulk of the total fish yield in all the studied beels, constituting 48.19% in Baroholai beel, 51.37% in Makhna Beel and 27.69% in Buridha beel. Clupeidae was next to Cyprinidae in term of numerical and quantitative representation. Among the clupeids, Chapila (Gudusia chapra), appeared in the stocked and control beel in a massive number. The massive occurrence of Gudusia chapra in the stocked beels under the present study confirmed the findings of Saha (2007) who observed the similar scenario in Boro beel, Borobila beel and Gawha beel. Baila (Gossogobius giuris), a voracious bottom feeder under the family Gobidae was present in an outstanding number in the control beel as compared to stocked beels (Baroholai and Makhna). Indian seasonal freshwater bodies were reported to be inhabited by 75 species under 23 families where dominance of Cyprinidae was clearly marked (Paik et al, 2003). Sugunan and Bhattachariya (2000) reported that Cyprinidae with 19 species was the major contributor of yield beel fishery in Assam followed by Ophiocephalidae with 4 species; Nandidae, Ambassidae, Mastacembeliae, Anabantidae and Cobitidae each with 2 species, and the rest of the families having one species each. Mohan and Singh (2004) noted the numerical dominance of Cyprinidae in the fishery yield of Kailana Lake, Jodhpur. The population structure and family composition of Baroholai, Makhna and Buridha beel as observed in the present study are in conformity with the findings of the above works.

Among the Cyprinids, Barbs were found to be the most abundant in all the beels constituting 29.04%, 24.97% and 16% of the total yield in Baroholai, Makhna and Buridha beel, respectively. A very much similar dominance of Puntius species in open water beels was also noted by Sugunan and Bhattachariya (2000) from West Bengal, India. Prolific breeding performance, availability of ample space for grazing and abundant food resources were the triggering factors for large scale occurrence of *Puntius* spp in the flood plains (Azher, 2009).

Catfishes (12.31- 23.45 %) were the third dominating group followed by Gobbies (6.05-11.46%) and Perches (6.41- 15.03%) in the overall composition of the beel fishery in the present study. Large catfishes particularly the members of Genus *Sperata* and *Wallago* were attributed for increased contribution of catfishes to the beel fishery. Yield of small catfishes (*Mystus sp.*) were found to be greatly reduced in the stocked beel (Baroholai and Makhna) beel as compared to control beel. Diminishing yield of catfishes in the stocked beels appeared to be due to the presence of common carp. Perches occupied the sixth dominant position (5.56-6.22%) in respect of their quantitative representation. *Chanda nama* popularly known as Golchanda took the lead in all the beels. There was no significant difference in the yield of perches in stocked and control beels. *Chanda nama* and *Pseudambassis ranga* were found to occur in the studied beels in huge number. The persistent occurrence of these spiny glass fish in the studied beels supported the findings of Saha (2007) who noted the regular occurrence of *Pseudambassis* spp in their field studies.

Prawns (*Macrobrachium spp*) were found to be represented by 2 species in each beels.

Minnows were represented by 11 species and this group as a whole constituted 4.57% of the total fish yield in Baroholai beel, 5.19% in Makhna Beel and 3.67-% in Buridha beel. Stocked beel contained increased quantity (48.15-58.64kg/ha) of minnows than the control bee (31.95kg/ha. Abundant occurrence of minnows in the stocked beels appeared to be due to availability of sufficient amount of natural fish food resources in the form of phyto-, zoo- and ichthyo-plankton and nutrient enriched suspended detritus arising from autochthonous organic materials i.e., decomposed rice and grass roots. This group constituted 3.71%, 3.59% and 10.16% of the total yield in Baroholai, Makhna and Buridha beel, respectively. The production of eels averaged 39.85kg/ha in stocked beels as opposed to 88.45 kg/ha in control beels. This level of eel production is comparable with those reported by Rahman (2010) from three seasonal beels in Mymensingh and Rangpur district.

As per list of IUCN (2000), 54 species of fish are under varying level of threat in Bangladesh. The results of the present study indicated that among the threatened fish species, 10 were present in both stocked beels as well as, control beel. Some of the species in Bangladesh already recognized as endangered such as, *Ompok pabda* and *Botia daio* were present in fairly good number in the stocked and non-stocked beel. These species are endangered in the national context of Bangladesh but they may not endanger in the context of Baroholai, Makhna and Buridha beel. The status of these species are much more better than presumed earlier.

Fish production in the stocked beels (Baroholai and Makhna) was much higher than that in the control beel where no common carp was stocked. Mean yield of indigenous fish was estimated to be 461.489 kgha-1 and for Common carp was 60.834 kgha-¹ in total 522.323 kgha-¹ in Baroholai beel where Makhna beel yielded 492.790 kgha⁻¹ by indigenous fish and 84.223 kgha⁻¹ by Common carp and in total 577.013 over the same period of time. The control beel yielded an average of 364.97 kgha-¹. Common carp alone contributed 11.64% of the total yield in Baroholai beel and 14.59% in Makhna beel. Carp was the most dominant group followed by Barb. Minnows, Clupeids and Perches in all the beels. The yield of indigenous fish including Common carp in the present studied beels is much less than the national average of 770 kg/ha (DoF, 2014). Similar level of fish yield (1948.72 kg/ha) was also reported by Ehshan et al. (2000) from Chanda Beel in Gopalpur district where carp contributed 27.51% and non-carps accounted for

72.49% of the total yield. Production of indigenous fish was 557 kg/ha in Bukabara beel, 593 kg/ha in Kannadah beel and 529 kg/ha in Rajganj beel (Haque *et al.*, 1999); as against of stocked carps of 367 kg/ha in Bukabara and 678 kg/ha in Kannadah. The migratory chapila (*Gudusia chapra*) alone *comprised* about 50% of the catch, but it was relatively scarce in the non-stocked lakes. Azher (2009) Rahman *et al.* (2017) and Ahmed (1999) recorded the highest yield of 1239.88 kg /ha in Chotabora beel in Mithamoin, which is higher than the present yield of 871.26 kg/ha to 1091.80 kg/ha from non-stocked and stocked beels.

Common carp performed well in Baroholai beel and Makhna beel where it was stocked at 2500 fry per hectare. The average survival rate varied from 4.5% to 5.4%. The harvested common carp was in the range of 1.00 kg to 2.0 kg with an average size of 1.2kg. Ansal et al. (2000) performed a study on ecological impact of exotic fishes on native fish fauna and observed the competition of common carp with Cirrhina reba. Zambrano et al. (1999) reported that stocking of common carp at a much higher densities have detrimental ecological impacts at several trophic levels. Sugunan and Bhattachariya (2000) observed that common carp competes with the native Cirrhina mrigala. Petr (1997) reviewing the widespread use of common carp throughout Indo-Pacific countries and Islands found no adverse impacts of common carp on native fauna.

Sugunan and Bhattacharjya (2000) reported that that common carp are not suitable for stocking in Indian reservoirs because of its high vulnerability to predators. But on the other hand, stock enhancement trials in Gralia beel (Jessore) and Hilna beel(Noagaon) under Third Fisheries project (TFP, 1990-1995) of the Department of Fisheries provided convincing results in favor of stocking Indian major carps and common carp (10 cm size fingerlings at the rate of 20 kg/ha) in seasonal floodplains. Common carp achieved the best result in terms of economic return, with net return of up to 30 times the biomass stocked. The size of common carp landed following the stocking by the TFP was between 1 and 3 kg, which was achieved in a 5-7 months period.

CONCLUSIONS

Stoking of common carp in seasonal beels appeared to be economically profitable in the context of Bangladesh. Though common carp exerts a little bit negative effect on the bottom dwelling fishes but its addition to the seasonal beels seems to be beneficial in terms of increased fish production and profit. Further studies should be conducted to precisely determine the consequences of stocking common carp in open water system.

REFERENCE

 M.N. Ahmed, Fingerling stocking in open waters. In: Middendorp, H.A.J., P.M. Thompson and R.S. Pomeroy (ed). Sustainable Inland Fisheries Mannagement in Bangladesh. ICLARM Conference, 1999, 58: 201-207.

- [2] A.K.M. Haque, H.A.J. Middendorp, M.R. Hasan, Impact of carp stocking on the abundance and biodiversity of non-stocked indigenous fish species in culture-based fisheries in Bangladesh. pp. 393-395. In: Proc. 4th Indian Fisheries Forum. Asian Fisheries Society. Kochin, 1999, India.
- [3] M.D. Ansal, A. Dhawan, K. Kaur, Ecological impact of exotic fishes on native fish fauna. Fishing Chimes. 2000, 20(6):13-15.
- [4] S.A. Azher, Impacts of fish sanctuary on production and biodiversity on aquatic organisms in rivers and beels of haor area. A Ph. D Thesis, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh. 2009, pp. 320.
- [5] S. Devnath, M.Y. Sarkar, N.S. Chowdhury, M.N. Amin, M.A.R. Hossain, Bioavailabilty of benthos in Gawha Beel. Chapai Nawabganj. Bangladesh Journal of Fisheries, 2004, 28(1-2): 9-13.
- [6] DoF (Department of Fisheries), Fish Fortnight Compendium, 2014. Department of Fisheries, Ministry of Fisheries and Livestock, Dhaka, Bangladesh, 2014, p. 95.
- [7] DoF (Department of Fisheries), Fish Fortnight Compendium, Department of Fisheries, Ministry of Fisheries & Livestock, Bangladesh. 2016, pp. 125-130.
- [8] M.A. Ehshan, M.S. Hossain, A. Razzaque, M.S. Alam, Kua-An unusual but important fishing of Chanda beel. Bangladesh Journal of Zoology, 2000, 28(1): 69-74.
- [9] A.K.M.A. Haque, A. Islam, M.A.R. Mollah, M.R. Hasan, Impact of carp stocking on non-stocked indigenous fish in the oxbow lakes of southern Bangladesh. National Workshop on Community Based Fisheries Management and Future Strategies for Inland Fisheries in Bangladesh. Dhaka, Bangladesh. 1999a, pp. 51-57.
- [10] A.K.M.A. Haque, H.A.J. Middendorp, M.R. Hasan, Impact of carp stocking on the abundance and,biodiversity of non-stocked indigenous fish species in culture-based fisheries: A case study from the oxbow lakes project. In: H.A.J. Middendorp, P. M. Thompson and, R.S. Pomeroy (eds.). Sustainable Inland Fisheries Management in Bangladesh, ICLARM Conf. Proc., 1999b, 58: 141-148.
- [11] M.S. Hossain, M.A. Ehshan, M.A. Mazid, S. Rahman, A. Razzaque, Biodiversity in floodplains with special reference to artificial stocking. Bangladesh J. Fish. Res., 1999, 4 (1): 69-74.
- [12] L. Horvath, 1992: A ponty (Cyprinus carpio) petefejlodesnek elwmzese es szabalyozasa. A. Halhusstermeles Fejlesztese. No.9 Haltenyesztesi Kutato Intezet, Szarvas, Hungary.
- [13] IUCN (International Union for Conservation of Nature) Red List, Red Book of Threatened Fishes of Bangladesh. 2000, pp.17-24.
- [14] B.C. Jha, Classification, Management and Status of Fish Production in Beels. Inland Fisheries Society of India, CIFRI, Barrackpore, India. 1989, pp. 52 -60.

- [15] T.K. Paik, S.K. Chakraborty, Ichthyofauna of east Singhbhum district, Jharkhand, India, Journal of Aquatic Biology, 2003, 18(2): 55-60.
- [16] T. Petr, The future fisheries in natural lakes under environmental stress in Tropical Asia. pp. 35-43 In: Sidik, B.J., F.M. Yousuf, Zaki, M.S.M. and Petr,T (erds). International conferencre on Fisheries and Environment: beyond 2000. University Putra Malaysia, Serdang, 1997, Malaysia.
- [17] M.F. Rahman, Technical intervention in seasonal floodplains under community based fishculture and its impacts on livelihood of the beneficiaries in Bangladesh. Ph.D. dissertation, Department of Fisheries Management, BAU, Mymensingh. 2010, p. 167.
- [18] M.M Rahman, Comparison of benthic fauna of two beels of Netrakona district under of different management condition. An M.S. dissertation submitted to the Department of Aquaculture, BAU, Mymensingh. 2000, p.75.
- [19] M.M. Rahman, M.R. Hasan, A study on fish and fisherman of Kaptai Lake. BAU Res. Prog., 1992, 6: 495-503.
- [20] J.K. Saha, Assessment of Aquatic Biodiversity in three beels of Bangladesh and relationship with environmental parameters. Ph.D. Dissertation, Dept. of Aquaculture, Bangladesh Agricultural University, Mymensingh. 2007, p. 324.
- [21] V.V. Sugunan, B.K. Bhattacharjya, Ecology and fisheries of beels in Assam. Central Inland Capture Fisheries Research Institute. Bull No. 104. Barrackpore, India. 2000, p. 65.
- [22] TFP (Third Fisheries Project), Implementation completion (floodplain stocking component). Third Fisheries Project. Department of Fisheries, Dhaka, 1996, Bangladesh.
- [23] L. Zambrano, M.R. Perrow, V. Aguirre-Hildalg, Impact of introduced carp (Cyprinus carpio) in sub-tropical shallow ponds in central Mexico. Journal of Aquatic Ecosystem Stress and Recovery, 1999, 6(4): 281-288.
- [24] S.M. Yeasmin, M.A. Rahman, M.M.M. Hossain, M.H. Rahman, A.A. Asif, Identification of

causative agent for fungal infection and effect of disinfectants on hatching and survival rate of common carp (*C. carpio*) larvae. Asian Journal of Medical and Biological Research, 2016, 1(3):578-588.

- [25] M.M. Islam, A.A. Asif, M.R. Amin, The Induced Breeding of Common Carps (*Cyprinus carpio*) in Bangladesh. Indian Journal of Science, 2016, 23(84): 619-632.
- [26] M.Y. Yeasmin, M.H. Rahman, M.A. Rahman, A.A. Asif, M.A.M. Farid, M.M. Billah, Influence of Feeding Administration of Brood-Stock on Breeding Performance of Common Carp (*Cyprinus carpio* Linnaeus, 1758). Journal of Aquaculture Engineering and Fisheries Research, 2018, 4(3):127-137.
- [27] S. Akter, M.F.U. Zaman, M.H.U. Jaman, I.N. Sithi, D. Yesmin, A.A. Asif, Morphometric study of banded gourami (*Colisa fasciata*) in Jessore, Bangladesh. Asian Journal of Medical and Biological Research, 2016, 2 (1): 113-120.
- [28] M.T. Hossain, M.S. Alam, M.H. Rahman, A.A. Asif, S.M. Rahmatullah, Present status of Indian major carp broodstock management at the hatcheries in Jessore region of Bangladesh. Asian-Australasian Journal of Bioscience and Biotechnology, 2016, 1 (2), 362-370.
- [29] M.A. Islam, A.A. Asif, M.A. Samad, B. Sarker, M. Ahmed, A. Satter, A. Hossain, A comparative study on fish biodiversity with conservation measures of the Bhairabriver, Jessore, Bangladesh. Asian Journal of Medical and Biological Research, 2017, 3 (3): 357-367.
- [30] H. Rahman, J.A. Mirza, A. Hossain, A.A. Asif, E. Haq, P. Chwakravorty, M. Rahman, Economics of fish production in paddy fields in Bangladesh. Asian Journal of Medical and Biological Research, 2017, 3 (3): 379-390.
- [31] M.A.I. Mondal, M.A. Kader, M.R.U. Nabi, A.A.M. Siddiqui, M.M. Billah, A.A. Asif, Bioeconomic analysis of ESBN fishery of Kumira, the coastal area of Chittagong, Bangladesh. Asian Journal of Medical and Biological Research, 2018, 4 (3), 315-322.